Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0302258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626152

RESUMO

Effective surface disinfection is crucial for preventing the spread of pathogens in hospitals. Standard UltraViolet-C (UV-C) lamps have been widely used for this purpose, but their disinfection efficiency under real-world conditions is not well understood. To fill this gap, the influence of the power of the ultraviolet radiator, source-sample distance, and exposure time on the performance of UV-C lamps against Escherichia coli and Staphylococcus epidermidis were experimentally determined in the laboratory and hospital. The obtained results showed that the UV irradiance and, thus, the UV-C disinfection efficiency decreased significantly at distances greater than 100 cm from the UV-C lamp. Moreover, increasing the total power of the radiators does not improve the performance of UV-C lamps under real conditions. The UV-C disinfection efficiency greater than 90% was achieved only under laboratory conditions at a close distance from the UV-C lamp, i.e., 10 cm. These findings provide novel insights into the limitations of UV-C lamps in real-world conditions and highlight the need for more effective disinfection strategies in hospitals.


Assuntos
Escherichia coli , Raios Ultravioleta , Desinfecção/métodos
2.
Acta Bioeng Biomech ; 23(4): 95-105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37341105

RESUMO

PURPOSE: During the dialysis process, hemolysis is the most frequently occurring problem to solve. Titanium dioxide nanotubes (TNTs) can be considered as a material preventing hemodialysis or blood species deposition thanks to their unique properties, i.e., hydrophilicity, smooth surface, and antibacterial. The purpose of this work was the electrochemical, chemical, and morphological characteristics of the TNTs and the evaluation of the possibility of using them as filter parts in dialysis techniques. METHODS: The tests were carried out on as-formed TNTs with a diameter of 50 ± 5 nm and 1000 ± 100 nm in height, and TNTs thermally modified in air atmosphere temperatures ranging from 350 to 550 °C. Electrochemical and microscopic analyses were performed both in the static and dynamic system of dialysis fluid (flow rate: 250 cm3 /min). Additionally, deposition or damage of blood cells was specified during the ex vivo dialysis experiment. RESULTS: Obtained results proved relationship between electrochemical properties of TNTs and the method of their modification. The results demonstrated that the TNTs annealed at 450 °C TNTs can be potentially applied for constructions dialysis membrane in the hemodialysis area due to their most stable stationary potential in dialysate, the highest value of impedance modulus, and the most favourable electrokinetic properties. Additionally, it was confirmed that annealed process causes improvement of corrosion resistance and protective properties for TNTs in the dialysis fluid. CONCLUSIONS: The result allowed for the conclusion that annealing is responsible for reduction of adsorption properties of TNTs, though this titanium dioxide nanotube still can be used as filter part in haemodialysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...